COURSE DESCRIPTION (SYLLABUS)

	Course:
1.	Biophysics
2.	Language of instruction:
	English
3.	Faculty:
	Faculty of Biotechnology
4.	Course/module code:
	29-BT-S1-E4-EnBph
5.	Course/module type (mandatory or elective):
	mandatory
6.	Programme:
	Biotechnology
7.	Study cycle (1st/2nd):
	1st cycle
8	Year:
0.	2nd
9.	Semester (autumn or spring):
	spring
10	Form of tuition and number of hours
10.	Lecture: 30 h
11	Coordinator(s):
<u> </u>	Mr. Maciej WIKTOR, PhD
	Initial requirements (knowledge, skills, social competences)
12.	Understanding of fundamentals of biology, chemistry, physics and calculus (natural and decimal logarithms, exponential functions, ordinary and partial differential equations, Leibniz's notation, integrals).
	Curiosity and desire for individual study at home.
13.	Objectives:
	Acquiring general knowledge in the interdisciplinary field of biophysics.
	Understanding physical underpinnings of basic biological phenomena and processes.
14.	Content:
	Physical quantities, units and prefixes; periodic table and properties of elements;
	orbital hybridization and chemical bonding; elements of living matter and what is so
	special about carbon; structure of biopolymers (amino acids and nucleotides) and
	properties of peptide bond; hypotheses on the emergence of life on Earth, Miller-Urey

experiment and its criticism.

Standard model and fundamental forces in nature; Coulomb's inverse-square law, types and properties of electrostatic interactions (ion-ion, ion-dipole, ion-dipole induced, dipole-dipole, dipole-dipole induced, dipole induced-dipole induced); types and strengths of bonds in biology (ionic, hydrogen bond, van der Waals).

Fundamental concepts of thermodynamics (system, boundary, surroundings, state of the system, state variables, state function, equilibrium, steady-state); ideal gas law, the Carnot cycle, p-V and T-S diagrams; macro- and microscopic forms of energy; heat vs. temperature, Maxwell-Boltzmann distribution of particle speeds in idealized gas.

Four laws of thermodynamics; isochoric and isobaric gas expansion; enthalpy of endoand exothermic processes, Hess' law; reversible vs. irreversible processes; heat capacity; thermodynamic probability and equality of statistical and classical formulations of entropy; Helmholtz and Gibbs free energy, temperature and spontaneity of processes.

Standard Gibbs free energy of reactants and processes; fundamental thermodynamic equations for closed and open systems; various formulations of chemical potential (partial molar internal energy/enthalpy/free energy/free enthalpy); chemical potential for ideal and non-ideal gases and solutions, relation of standard Gibbs free energy and equilibrium constant.

Van't Hoff equation; electrochemical work and potential; chemiosmotic theory and directions of chemiosmotic proton transfers; electrochemical potential gradient, proton-motive force; reduction-oxidation reactions, voltaic cell, standard hydrogen electrode, redox potential; relation of redox potential difference and Gibbs free energy, Nernst equation.

Behavior of amphiphilic molecules in solution, hydrophobic effect (water entropy gain and temperature); classification of lipids based on interaction with water; mesomorphism of lipids, phase transitions and phase diagrams; detergents (classification, examples, structures, properties and applications), critical micelle concentration, aggregation number.

Classification of lipids based on chemical structure (fats/oils, waxes, phospholipids, glycolipids, sulfolipids, cerebrosides, ketone bodies, eicosanoids, steroids, carotenoids); fatty acids (saturation, properties and nomenclature); soaps and saponification; chemical structure and properties of membrane lipids, fluid mosaic model of cell membrane by Singer and Nicolson.

Langmuir-Blodgett trough and its applications to study lipid monolayers; sandwich model of the cell membrane by Davson and Danielli; proliferation of membranes; asymmetric distribution of phospholipids; cholesterol (structure and function); lipid rafts; membrane permeability of different solutes; passive (simple diffusion, facilitated diffusion, osmosis) and active (primary and secondary) membrane transport; thermodynamic descriptions of various membrane transport processes.

Primary nutrition groups, morphology of a mitochondrion, structure and function of mitochondrial respiratory chain (complex I - NADH dehydrogenase, complex II - succinate dehydrogenase, complex III - cytochrome c reductase, complex IV - cytochrome c oxidase), electron transfer cofactors (hemes, iron-sulfur clusters, freely mobile carriers), Q cycle, structure and function of ATP synthase, stoichiometry of ATP synthesis.

Chloro- and retinalophototrophy; oxygenic and anoxygenic photosynthesis; morphology of a chloroplast; structures and absorption maxima of chlorophylls and accessory pigments, photosynthetic antenna pigment-protein complexes, Emerson enhancement effect; structures and function of photosynthetic electron transfer chain (photosystem II, cytochrome b₆f, plastocyanin, photosystem I, ferredoxin), changes of redox potential during photosynthesis (Z scheme), cyclic and non-cyclic electron flow.

Interaction between radiation and matter, electromagnetic radiation spectrum; visible light and color perception; relation of radiation and energy; classification of spectroscopy; electronic transitions between orbitals ($\sigma \rightarrow \sigma^*$, $n \rightarrow \sigma^*$, $n \rightarrow \pi^*$, $\pi \rightarrow \pi^*$), bond conjugation and electron delocalization; chromophores; auxochromes; batho-, hypso-, hyper-, and hypochromic effects; effect of solvent on absorption properties of solutes; three laws of absorption; Beer's law and its limitations.

Constructive and destructive interference of radiation; nuclear spin and magnetic dipole moment; gyromagnetic ratio; behavior of nuclei in magnetic field; structure of an NMR spectrometer; NMR experiment (excitation, Larmour precession, relaxation, data acquisition, Fourier transform); chemical shift, NMR reference compounds; spin-spin coupling and multiplicity of NMR signals; nuclear Overhauser effect; applications of uni- and multidimensional NMR spectroscopy.

Diffraction, overview of protein X-ray crystallography, structure of a crystal (symmetry operations, crystal lattice, unit cell, asymmetric unit); thermodynamics and phase diagram of crystallization; methods of obtaining crystals; precipitants; Bragg's law; X-ray data collection, diffraction pattern, real and reciprocal lattice; structure factors and electron density, phase problem and its solutions.

15	Learning outcomes: Student:	Outcome symbols:
	 makes a qualitative and quantitative description of the basic biological phenomena and processes; 	K1_W01
15.	 have extensive knowledge in the field of biophysics; 	K1_W05
	 knows the basic concepts, terms, techniques used in biophysics; 	K1_W06
	 reads and understands scientific literature in the field 	K1_U03

	biophysics in English;		
	 takes advantage of the online resources and literature to obtain information on biophysics; 	K1_U04	
	 understands the need for continuing education throughout the whole life, including broadening knowledge in biophy 	ut K1_K01 sics.	
	Recommended literature:		
	 Biochemistry, 8th Edition. Berg, Jeremy M., Tymoczko, Joh Stryer 	n L., Gatto, Gregory J.,	
	• Biophysics: An Introduction, 2 nd Edition. Roland Glaser		
	 Fundamentals of Thermodynamics, 8th Edition. Claus Borg Sonntag 	nakke and Richard E.	
	 Chemistry for Engineering Students, 2nd Edition. Lawrence S. Brown, Thomas A. Holme 		
16.	Bioenergetics, 4 th Edition. D. G. Nicholls, S. J. Ferguson		
	• Energy transduction in biological membranes: a textbook of bioenergetics. W. A. Cramer and D. B. Knaff		
	 Molecular Biology of the Cell. 6th Edition. Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter 		
	UV-VIS Spectroscopy and Its Applications. Heinz-Helmut P	Perkampus	
	 Understanding NMR Spectroscopy. 2nd Edition. James Kee 	ler	
	Crystallography Made Crystal Clear. 3 rd Edition. Gale Rhod	les	
	Methods of verification of the assumed learning outcomes:		
17.	written exam		
	Conditions of earning credits:		
18.	positive exam result, active participation in the lectures		
	Student's workload:		
	Activity	Number of hours for the activity	
19.	 Hours of instruction (as stipulated in study programme): lecture: 30 h 	35 h	
	• consultations: 5 n Student's own work:		
	reading the literature	35 h	
	 preparation for the exam 		
	Total number of hours:	70 h	
	Number of ECTS:	3 ECTS	