COURSE/MODULE DESCRIPTION (SYLLABUS)

1.	Course:		
1.	Genomics and Molecular Evolution		
2.	Language of instruction:		
۷.	English		
3.	Faculty:		
J.	Faculty of Biotechnology		
4.	Course/module code:		
-T •	29-BT-S2-E2-EngGme		
5.	Course/module type (mandatory or elective):		
	Mandatory		
6.	Programme:		
	Medical Biotechnology		
7.	Study cycle:		
7.	2nd cycle		
8.	Year:		
0.	1st		
9.	Semester (autumn or spring):		
	Spring		
10.	Form of tuition and number of hours:		
	Lecture, 30 h		
11.	Name, Surname, academic title:		
11.	Paweł MACKIEWICZ, Prof.		
12.	Initial requirements (knowledge, skills, social competences) regarding the course/module and its completion:		
	Basic computer skills. Genetics and molecular biology. Bioinformatics.		
	Objectives:		
13.	Understanding the basic issues in the field of genomics and related databases; knowing the idea of algorithms and computer methods used in genome analysis; learning the basics of transcriptomics: bioinformatic analysis of the expression profile, examples of microarray applications in biology and medicine; knowing the organization of genomes, methods for their analysis and genomic databases; understanding New Generation Sequencing (NGS);		
	Understanding the principles of molecular evolution; understanding the methods of molecular phylogenetics: collecting homologous sequences and preparing alignments for phylogenetic analyses; determining the substitution model, constructing a phylogenetic tree, analysis and evaluation of phylogenetic tree, testing phylogenetic hypotheses; getting to know examples of the evolution of genes, proteins and		

	of molecular clock and molecular dating.		
	Content: Basic issues in the field of genomics and related databases; basics of transcriptomics: bioinformatic analysis of the expression profile, examples of microarray applications in biology and medicine; organization of genomes, methods for their analysis and genomic databases; New Generation Sequencing (NGS);		
14.	Principles of molecular evolution; types of homologous sequences (orthologs, paralogs and xenologs); alignments suitable for phylogenetic analyses; types of substitution model; variation of substitution rate in and between sequences; methods of phylogenetic tree construction (UPGMA, NJ, ME, LS/FM, MP, ML, Bayesian); analysis and evaluation of phylogenetic tree, bootstrap method; testing phylogenetic hypotheses; evolution of genes, proteins and genomes; molecular clock and molecular dating.		
	Learning outcomes:	Outcome symbols:	
15.	 Student understands and knows the idea of genomic databases and algorithms applied in bioinformatics software related to genomics. Student knows principles of molecular evolution, understands the idea of phylogenetic analyses and is able to give examples of evolution at the molecular level. 	K_W01, K_W03, K_W04, K_W06 K_U01, K_U03, K_U05, K_U07, K_K01, K_K05	
	Recommended literature:		
16.	 Recommended literature: Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec Publishing, 2005 	Aanual. Oxford University Press.	
	 Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec 	Aanual. Oxford University Press. ular Evolution, Blackwell	
16. 17.	 Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec Publishing, 2005 	Aanual. Oxford University Press. ular Evolution, Blackwell	
17.	 Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec Publishing, 2005 Methods of verification of the assumed learning outcome 	Aanual. Oxford University Press. ular Evolution, Blackwell	
	 Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec Publishing, 2005 Methods of verification of the assumed learning outcome open test 	Aanual. Oxford University Press. ular Evolution, Blackwell	
17.	 Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec Publishing, 2005 Methods of verification of the assumed learning outcome open test Conditions of earning credits: 	Aanual. Oxford University Press. ular Evolution, Blackwell	
17.	 Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec Publishing, 2005 Methods of verification of the assumed learning outcome open test Conditions of earning credits: Attendance, passing test and practical colloquia 	Manual. Oxford University Press. ular Evolution, Blackwell es:	
17.	 Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec Publishing, 2005 Methods of verification of the assumed learning outcome open test Conditions of earning credits: Attendance, passing test and practical colloquia Student's workload: 	Manual. Oxford University Press. ular Evolution, Blackwell es: Number of hours for the	
17.	 Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec Publishing, 2005 Methods of verification of the assumed learning outcome open test Conditions of earning credits: Attendance, passing test and practical colloquia Student's workload: Activity Hours of instruction (as stipulated in study programme): 	Manual. Oxford University Press. ular Evolution, Blackwell es: Number of hours for the activity	
17.	 Lesk. Introduction to Genomics. Oxford University G. Hall. Phylogenetic Trees Made Easy. A How-To N 2017 P.G. Higgs, T.K. Attwood Bioinformatics and Molec Publishing, 2005 Methods of verification of the assumed learning outcome open test Conditions of earning credits: Attendance, passing test and practical colloquia Student's workload: Activity Hours of instruction (as stipulated in study programme): lecture Student's own work 	Manual. Oxford University Press. ular Evolution, Blackwell es: Number of hours for the activity 30 hours	