COURSE DESCRIPTION (SYLLABUS)

	Course:
1.	Enzymology
2.	Language of instruction:
	English
3.	Faculty:
	Faculty of Biotechnology
4.	Course/module code:
	29-BT-S1-E6-EnENc
5.	Course/module type (mandatory or elective):
	mandatory
6.	Programme:
	Biotechnology
7	Study cycle (1st/2nd)
/.	1st cycle
0	Year:
0.	3rd
Q	Semester (autumn or spring):
	spring
	Form of tuition and number of hours:
	Laboratory: 45 h
10.	Learning methods:
	Designing experiments, performing experiments, solving computational tasks, working
	in groups, analyzing results and solving problems.
11.	Coordinator(s):
	Aleksandra Sokołowska-wędzina, PhD
	Initial requirements (knowledge, skills, social competences)
	The student understands the concepts of general chemistry and protein structure. The student distinguishes and knows how to use the basic biophysical methods in the study
12.	of protein structure and function (including spectrophotometry). The student has the
	ability to perform chemical and biochemical calculations. The student should have
	buffers). Student is familiar with Microsoft Word and Microsoft Excel or equivalent.
	Objectives:
13.	The aim of the exercises is to familiarize students with the practical application
	of methods for determining kinetic parameters of enzymatic reactions, determining

	the equilibrium constant interactions between enzymes and inhibitors, and chemical modifications of the active enzyme center.			
14.	 Content: Enzymology laboratory practice includes: Preparation of all necessary reagents including buffers, enzyme solutions, inhibitors and substrates; Determination of kinetic parameters (KM, kcat, kcat / KM) of the hydrolysis of the synthetic substrate (BApNA) catalyzed by trypsin. Determination of the concentration of active trypsin inhibitor (BPTI) by titration of the designated trypsin with an inhibitor. Measurement of the association constant (Ka) of the chymotrypsin - BPTI interaction by the determination of residual enzyme activity of chymotrypsin. Specific, chemical modification of the side chains of Ser residues in trypsin and chymotrypsin with PMSF (phenylmethylsulfofluoride) and TLCK and its effect on enzyme activity. 			
	 Learning outcomes: Knowledge: The student explains the issues of enzymology, enzymatic kinetics and enzyme interactions with inhibitors. The student is able to make a qualitative and quantitative description of the basic phenomena and processes in the field of enzyme activity The student recognizes and selects the appropriate biochemical, mathematical, statistical and IT methods required for examination, description and interpretation of kinetic parameters of enzyme activities and their interaction with inhibitors. 	Outcome symbols: K1_W05 K1_W01 K1_W02 / K1_W04		
15.	 The student selects, compares and applies appropriate physicochemical and biochemical techniques necessary for studying enzyme kinetics and enzyme-inhibitor interactions. The student conducts experiments under the guidance of a scientific supervisor in the field of enzymology and prepare the necessary physicochemical measurements. The student obtains additional experience in the planning and careful implementation of individual steps of the experiment. The student increase his/her manual dexterity in laboratory work and builds the ability to manage his/her workspace in the laboratory. The student uses computational methods, as well as statistical and IT tools (including Microsoft 	K1_U01 K1_U05 / K1_U07 K1_U06		

	interpret the obtained results in the field of		
		KA 1100 (KA 1100	
	• The student is able to organize, analyze and	KI_008/KI_009	
	properly describe the results of the experiments.		
	Student can draw conclusions based on the		
	results obtained and propose solutions in case of		
	problems. The student is able to present his/her		
	results in the form of a coherent, structured and		
	complete scientific report.		
	• The student builds his efficiency of	K1_U13	
	communication and cooperation with other team		
	members.		
	Social competences:		
	 Student understands the need for accurate 	К1 КОЗ	
	nlanning of tasks and scientific experiments		
	based on available knowledge. The student have		
	in mind that the knowledge, skills and materials		
	that he developed within this severe will serve		
	that he developed within this course will serve		
	nim/ner in further research work - student feels		
	the purpose and the need to do high quality		
	work.	K1 K01/K1 K02	
	 The student acquires the ability to freely discuss 	KI_KUI/ KI_KUZ	
	the results of his work with another scientist		
	(eg. the teacher), as well as presenting his own		
	reasoning, which gives him confidence and		
	courage to propose his own solutions.		
	• The student develops the ability to perform tasks	K1_K06	
	autonomously and carefully, at the same time		
	understands that the difficulties, errors and		
	failures that sometimes happen in research work		
	should be treated as an important feedback.		
	Thanks to this, the student is not afraid to take		
	the necessary risk, looks for appropriate solutions		
	and develops his creativity, which often lead to		
	important scientific discoveries and further		
	implementations		
	Recommended literature:		
	 Enzymes: Catalysis, Kinetics and Mechanisms. Pu Gmbh. 2018: 	nekar, N.S., Springer-Verlag	
16.	Additionally:		
	Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and		
	Protein Folding, Alan Fersht, W. H. Freeman, 1998.		
	 Enzyme Kinetics: Behavior and Analysis of Ranid Fauilibrium and Steady-State 		
	Enzyme Systems Irwin H Sagal Wilay-Interscion	ce: New Ed edition 1993	

	Methods of verification of the assumed learning outcomes:				
	 Consultation during laboratory practice. During the course of the exercises the student consults with the teacher his/her calculations, presents the reasoning and discusses the results of the experiment. On the basis of the acquired skills, together with the teacher student discusses possible solutions to problems that arise during the conducted experiments. This approach allows the teacher to assess the student's correct understanding of the topic. 				
17.	2) Scientific report. The student prepares an individual scientific report based on experiments performed. Preparing the report allows the student to structure the acquired knowledge and skills, whereas teacher gains the possibility to follow student reasoning, check the correctness of calculations and the level of understanding of the conducted experiments. Each report should be made in such a way that the student can use the information contained therein in his further research. Each report is consulted individually with the teacher (by email or in person).				
	3) Self-verification. The student has the opportunity to independently verify his/her ability to apply the acquired knowledge from the enzymology field by solving additional tasks prepared by the teacher (student's own work). If students face difficulties to find a solution the trainer encourages students to cooperate and conduct the brainstorm approach to find the right answer.				
	4) Colloquium . The final test contains questions and tasks that are aimed at tracing the reasoning and the level of material understanding by the student. The tasks included in the colloquium give the teacher the opportunity to check how the student uses the acquired skills to solve tasks and problems characteristic of the subject of enzymology. During the course of the colloquium the student has the right to use the material (scientific report) that he prepared and consulted with the teacher. The result of the colloquium is consulted individually with the student. The student has the right to re-enter the colloquium if he decides he wants to re-verify his skills and improve his score.				
	Conditions of earning credits:				
18.	Conditions for crediting the subject include: preparation of a scientific report, individual consultation with the teacher (personal or by email) and a positive result from the written colloquium (more than 50%).				
	The student's assessment is influenced by: colloquium result, scientific report and involvement in a laboratory work, and is individually discussed with the student.				
	Student's workload:				
19.	Activity	Number of hours for the activity			
	Hours of instruction (as stipulated in study programme):Laboratory practice and consultations	45 h			
	 Student's own work: Preparation for classes, preparation of a scientific report, preparation for the colloquium - including solving 	25 h			

	additional tasks provided by the teacher.	
	Total number of hours:	70 h
	Number of ECTS:	2 ECTS