MODULE DESCRIPTION (SYLLABUS)

1.	Module:
	General and Inorganic Chemistry
2.	Language of instruction:
	English
3.	Faculty
	Faculty of Biotechnology
4.	Course/module code:
	29-BT-S1-E1-EnGICH (Lect.)
5.	29-BT-S1-E1-EnGICHc (Lab.) Course/module type (<i>mandatory</i> or <i>elective</i>):
	mandatory
6.	Programme:
	Biotechnology
	Study cycle (1st/2nd):
7.	1 st cycle
	Year:
8.	1st
9.	Semester (autumn or spring):
9.	autumn
	Form of tuition and number of hours:
10.	Lecture: 30 h
	Laboratory: 30 h
11.	Coordinator(s):
	Lect.: Adam Jezierski, Prof. Lab.: Michał Kobyłka, PhD
10	Initial requirements (knowledge, skills, social competences):
12.	Basic knowledge of chemistry, high school/secondary school level.
	Objectives:
13.	Passing the knowledge necessary to understand the natural processes and phenomena.
	Shaping the understanding of mechanisms that stand behind various chemical reactions, differentiation of various reaction types.
	Introduction to the nomenclature of inorganic compounds.
	Passing on the basic theoretical concepts of coordination chemistry, and developing the ability of using them in predicting the structure and reactivity of metal complexes.
	Introduction to independent laboratory work and critical interpretation of results.
	<u> </u>

	Introduction to the basic concepts and rules of analytical chemistry.		
	Introduction to the basics of laboratory practice.		
	Content:		
	Lect.:		
	Basics of quantum mechanics, the wave function, energy levels of atoms and molecules.		
	Explanation of the periodic table of the elements based on quantum numbers.		
	Behavior of elements within periods and groups.		
	Chemical bonding – covalent, ionic, metal and hydrogen bonds – conditions of forming, stability.		
	Relationships between chemical bonding and macroscopic, thermodynamic properties.		
	Symmetry of molecules.		
	Molecular interactions and their relationship to gas phase, liquid phase and solid stat properties.		
	Chemical equations. Basic types of chemical reactions – acid-base reactions, reduction oxidation reactions, organic chemistry reactions (addition, substitution and elimination). Chain reactions. Stoichiometry.		
	Basic chemical calculations. Solutions and solvents.		
14.	Basic concepts of chemical thermodynamics, reaction heat, enthalpy, entropy, Gibbs free energy.		
	Chemical equilibrium, reversible and irreversible reactions, examples from geochemistry, biochemistry, industrial processes and common-day applications.		
	Basic concepts of chemical kinetics.		
	Catalysts and catalysis.		
	Reactions of radicals.		
	Basics of organic chemistry – vital types of organic molecules and their characteristic reactions.		
	The carbon cycle. Photosynthesis as a chain of consecutive photochemical and redox reactions of organic compounds; energetics of photosynthesis.		
	Examples of element cycles in nature – geochemical processes.		
	Modern chemical analysis: spectroscopy (IR, UV-Vis, NMR, EPR), electrochemistry, chromatography – theoretical background and applications.		
	Lab.:		
	General rules and safety regulations for work in the chemical laboratory.		
	Concentration of hydrogen ions and pH indicators.		
	Buffer solutions.		
	Qualitative analysis of inorganic compounds.		
	Classical quantitative analysis: acid-base titration, redox titration and complexometric		

	titration.				
	Learning outcomes:	Outcome symbols:			
	Student:				
	 comprehends the basic chemical laws and concepts that apply to the microscopic scale, and should be able to illustrate them by appropriate examples, 	K1_W04, K1_W07, K1_W10			
15.	 is able to connect the physical properties to molecular structure, 				
	 has the necessary knowledge to comprehend the common natural phenomena, 				
	• is able to apply chemical calculations in every-day laboratory practice, know how to properly handle experimental data, and be able to list examples of situations where these skills are commonly used,				
	 knows the physicochemical properties of selected compounds and know the basic rules of handling chemicals, and laboratory hygiene and safety. 				
	 is able to define and explain basic laws and concepts of chemistry, 	K1_U01, K1_U05, K1_U06, K1_U07, K1_U11, K1_U12,			
	 is able to apply the rules that govern handling chemicals and laboratory safety, 	K1_U13			
	 is able to use basic laboratory equipment and perform basic laboratory activities, 				
	 is able to identify the various factors that can influence the outcome of conducted research, and should be able to find the main sources of experimental error, 				
	 knows to solve problems encountered during research, based on various resources. 				
	• is aware of his overall knowledge and understand the need of its constant improvement,	K1_K01, K1_K02, K1_K03, K1_K05			
	 is able to work in a team environment, and be responsible for the tasks and duties placed upon him, 				
	 is able to use literature sources in order to find the necessary information, 				
	 is able to take responsibility for the safety of himself and others around him. 				

	Recommended literature:			
16.	Steven S. Zumdahl, Chemical Principles, 6th Edition, Brooks/Cole, 2009			
	Kenneth W. Whitten, Raymond E. Davis, M. Larry Peck, George G. Stanley, <i>Chemistry</i> , Brooks/Cole, 2010			
	Leo J. Malone, Theodore Dolter, <i>Basic Chemistry</i> , 9th Edition International Student Version, Wiley, 2012			
	Methods of verification of the assumed learning outcomes			
17.	 Lect.: written exam, optional oral examination for better notes Lab.: pre-lab tests, laboratory reports, mid-lab tests 			
	Conditions of earning credits:			
18.	 Active participation in laboratory classes Completion of the laboratory classes is based on pre-lab tests, mid-lab tests and laboratory reports Completion of the lecture is based on a written or oral exam 			
19.	Student's workload:			
	Activity	Number of hours for the activity		
	 Hours of instruction (as stipulated in study programme) : Lect.: 30 h Lab.: 30 h 	60 h		
	 Student's own work: preparation before classes: 30 h writing reports: 10 h preparation for the final exam: 20 h 	60 h		
	Total number of hours	120 h		
	Number of ECTS: • Lect.: 3 ECTS • Lab.: 2 ECTS	5 ECTS		